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Abstract

Generating large-scale 3D scenes cannot simply apply
existing 3D object synthesis technique since 3D scenes usu-
ally hold complex spatial configurations and consist of a
number of objects at varying scales. We thus propose
a practical and efficient 3D representation that incorpo-
rates an equivariant radiance field with the guidance of
a bird’s-eye view (BEV) map. Concretely, objects of syn-
thesized 3D scenes could be easily manipulated through
steering the corresponding BEV maps. Moreover, by ade-
quately incorporating positional encoding and low-pass fil-
ters into the generator, the representation becomes equiv-
ariant to the given BEV map. Such equivariance allows
us to produce large-scale, even infinite-scale, 3D scenes
via synthesizing local scenes and then stitching them with
smooth consistency. Extensive experiments on 3D scene
datasets demonstrate the effectiveness of our approach. Our
project website is at: https://zqh0253.github.
io/BerfScene/.

1. Introduction
The advancement in implicit and explicit 3D representa-
tions has driven the rapid progress in high-quality 3D ob-
ject generation [3, 12, 14, 33, 38, 42, 50, 58]. However,
directly applying object synthesis methods to 3D scene gen-
eration poses challenges due to inherent variations in spatial
scales and composited objects within 3D scenes. Consider-
ing that urban architects construct city scenes, they won’t
place building randomly but always starts from a detailed
map, serving as a foundational guide outlining the spatial
configurations of blocks and buildings. This highlights the
need for a suitable representation tailored for 3D scenes, ca-
pable of streamlining the scene generation process.

A well-structured scene representation must capture spa-
tial relationships between objects and have the flexibility to
scale up, facilitating the generation of scenes on a large or
infinite scale. Previous approaches often relied on scene
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(a) Inference on infinite scale (“BERFSCENE”)

(b) Inference on large scale driving scene

Figure 1. BerfScene focuses on unbounded 3D scene synthe-
sis. Above: a CLEVR scene labeled ”BERFSCENE”. Below: a
driving scenario before and after executing a right turn.

graphs [6, 19, 39, 52] for representation, containing rich
object relations but facing limitations in processing due to
unstructured topology. Recent work DiscoScene [59] pro-
poses representing scenes with a set of 3D bounding boxes.
However, despite offering a volumetric depiction of objects,
it introduces complexity in interpreting the entire scene and
faces scalability challenges.

To overcome this, we choose a 2D bird’s-eye-view
(BEV) map to describe the scene structure, providing a
practical and efficient way to represent and analyze spa-
tial information, thereby simplifying the scene generation
process. Concretely, BEV map could specify the compo-
sition and scales of objects clearly. Generating a large-
scale scenes could be thus formulated as synthesizing local
scenes first and then composing them together. However,
composing the local blocks into a coherent global scene in
3D space always leads to the severe artifacts such as jitter-
ing and inconsistency, as BEV maps can be ambiguous to
fine-grained semantics i.e., primarily deliver a global layout
and locations of objects but lack insights into the detailed
visual appearance of the objects.

To avoid the ambiguity of BEV maps, recent attempts
like InfiniCity [28] and SceneDreamer [5] incorporate ex-
plicit 3D structures (e.g., voxels) as a hard constraint to
ensure the continuity of the composition process. How-

1

https://zqh0253.github.io/BerfScene/
https://zqh0253.github.io/BerfScene/


ever, collecting and loading large-scale 3D structures al-
ways pose the computational overhead and inefficiency. Al-
ternatively, we tackle this issue by integrating the equivari-
ance property with a carefully-designed architecture into the
BEV-conditioned representation. The consistency across
various local scene generation is accordingly enhanced.

By introducing BEV-conditioned Equivariant Radi-
ance Fields based on such representation, we present
BerfScene, a framework allowing for large-scale 3D
scene synthesis and flexible editing of camera pose and
composite objects, as shown in Fig. 1. Our generator is con-
ditioned on a local BEV patch to learn the entire scene’s dis-
tribution, utilizing a specific network architecture to main-
tain equivariance across the same semantic regions in dif-
ferent BEV maps. This design incorporates extra padding
and low-pass filters [24, 62] in the generator to reduce alias-
ing, ensuring consistent synthesis reflecting specified spa-
tial configurations under any local coordinates. Thanks to
the equivariance of the BEV-conditioned representations,
our method can learn from 2D images showing scenes with
limited spatial extent, while also being capable of generat-
ing infinite-scale 3D scenes. We evaluate our method on 3D
scene datasets including CLEVR [18], 3D-Front [10, 11],
and Carla [9]. Through qualitative and quantitative exper-
iments, we demonstrate that our method achieves state-of-
the-art performance in generating large-scale 3D scenes.

2. Related work
3D-aware image synthesis. We have witnessed amazing
progress in image generation with 2D GANs [13, 21–24].
Recent works lift 2D GANs with 3D inductive bias for
3D-aware generation from unstructured single-view image
collections. Early works leverage the voxel [33, 43, 63],
mesh [12, 55], depth [47] or 2D feature plane [50, 51] to ex-
plicitly model object structure, but suffer from poor visual
fidelity and geometric consistency. Another line of research
integrates the neural radiance fields [2, 7, 40, 42, 48, 53, 57]
into the GAN generator to alleviate these limitations. Re-
cently, diffusion models have been used to synthesize 3D-
aware images by distilling knowledge from large pretrained
text-to-image models [41] or by training from scratch with
direct 3D supervision [16, 20, 35, 37, 49] or adopt image-
to-image translation framework using view conditioning [4,
15, 27, 29–31, 60]. However, these methods primarily focus
on object modeling and have limited capacities in generat-
ing large-scale scenes, which our method focuses on.
3D scene generation. Although 3D aware-image and ob-
ject generation has been significantly advanced in recent
years, 3D scene generation remains a challenging task since
generating a 3D scene usually considers the composition
of objects and their corresponding scales. To tackle these
issues, recent attempts explore to leverage existing prior
like layout [34, 36, 59, 61], grid plane [8, 26], depth

maps [45, 46, 51], or voxels [5, 28] to generate 3D scenes.
We follow this philosophy yet incorporate a BEV-map as
the conditions as it enables the flexible division of a large-
scale scenes i.e., specifies the scene configuration clearly.
A very related work CC3D [1] shares similarities with our
approach in utilizing a bird’s-eye-view (BEV) map as a con-
ditioned layout for generating scene radiance fields. How-
ever, CC3D is limited in its ability to generate infinite 3D
scenes due to its lack of composition modeling. In con-
trast, our model overcomes this limitation by employing an
equivariant representation conditioned on BEV maps, en-
abling seamless composition and facilitating the generation
of infinite-scale scenes.

3. Method
BerfScene employs a BEV map as an input to specify
a scene and generates a radiance field conditioned on the
BEV representation, which is then used for image synthe-
sis through volume rendering. To support large-scale scene
generation, the BEV-conditioned radiance field is further
extended into an equivariant representation through a care-
fully designed feature extractor. We first introduce prelim-
inary knowledge about volume rendering in Sec. 3.1. In
Sec. 3.2, we discuss the design of the equivariant represen-
tation. Sec. 3.3 describes the scene generation framework,
including implementation, training, and inference details.

3.1. Preliminaries

The neural radiance field [32] has gained tremendous pop-
ularity among recent works in view synthesis and image
generation. Specifically, to render an image given a cam-
era viewpoint, multiple rays are cast out, with N points
{pi|i = 1, · · · , N} sampled along each ray r. For each
point pi = (xi, yi, zi), we query its color ci and density σi:

ci, σi = Θ(f(pi), d), (1)

where f(pi) is the encoding feature of pi, d is the ray direc-
tion, and Θ is parameterized as a Multi-Layer Perceptron
(MLP). The color of the ray C(r) is further calculated as
the weighted average of each point’s color:

C(r) =

N∑
i=1

 i∏
j=1

e(−σjδj) · (1− e(−σiδi))

 ci, (2)

where δi is the length of the i-th interval on the ray.
As for f(·) , there are different design choices

to encode each single point, like positional em-
bedding: f(pi) = (pe(xi),pe(yi),pe(zi)), and
sampled feature from 2D feature map: f(pi) =
(Φ(Uxy, xi, yi),Φ(Uxz, xi, zi),Φ(Uyz, yi, zi)), where
Uxy, Uxz, Uyz denote learnable 2D feature map and Φ
denotes feature sampling operation.
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Figure 2. Illustration of BerfScene: A U-Net takes the fourier feature as input and gradually down-samples (DSB) and up-samples
(USB) the features. The internal features would be spatially modulated by the BEV maps via SEL block, resulting in a BEV-conditioned
radiance field. With the anti-aliasing design (e.g., low-pass filters), the entire synthesis pipeline becomes equivariant to the BEV maps.

Recent works additionally sample latent code s
and incorporate it into the encoding feature f(·) for
3D-aware image generation [2, 7, 42]. For example,
EG3D [3] encodes each point feature as: f(pi) =
(Φ(Uxy(s), xi, yi),Φ(Uxz(s), xi, zi),Φ(Uyz(s), yi, zi)),
where Uxy(s), Uxz(s), Uyz(s) are generated 2D feature
map conditioned on latent code s. Our work follows this
line of works.

3.2. Equivariant BEV-conditioned representation
for radiance field

Given that various scenes (e.g., traffic scenes) could be rep-
resented by a ground plan, we propose to leverage Bird-
Eye-View (BEV) map to steer the generation of the radiance
field. We also improve the equivariance of the representa-
tion for large-scale scene synthesis. In this section, we will
provide a detailed explanation of our design.
BEV-conditioned radiance field. In order to incorporate
the prior information provided by the BEV map, we intro-
duce a generator U that generates a conditioned 2D feature
map. The network architecture of U is a U-Net architecture
with StyleGAN blocks. As illustrated in Fig. 2, the genera-
tor takes a 2D Fourier feature map γ as input and progres-
sively modifies the feature map using sequential encoders
and decoders, which are modulated by a randomly sampled
latent code s and the BEV map B.

We incorporate the 2D Fourier feature map γ as the input
to provide positional information for local radiance field. It
is defined on a positional grid v that spans the global coordi-
nates. Each position in the grid is associated with a specific
value.:

γ(v) =
[
a1 cos

(
2πbT

1 v
)
, a1 sin

(
2πbT

1 v
)
, . . . ,

am cos
(
2πbT

mv
)
, am sin

(
2πbT

mv
)]T

,
(3)

where ai,bi denotes predefined amplitudes and Fourier ba-

sis frequencies. Each subsequent encoder or decoder uses
Spatial Encoding Layer (SEL) [54] to incorporate the BEV
map B. Concretely, given an intermediate feature map a,
one block in U-Net operates as:

a′ = SEL(T (a), T (E(B))), (4)
a′′ = ModConv(a′, s), (5)

where E is an encoder with two convolutional layers that
extracts BEV’s feature map, T (·) denotes the interpolation
operation that resizes the two feature maps, and ModConv
performs the modulated convolution [23] to further modify
the features based on the latent code s.

The output feature map of the U-Net U is then lifted to
3D by computing cross product with the positional embed-
ding of coordinate z: U(B, γ, s)×{pe(Z)}. Consequently,
color and density can be obtained via:

c, σ = Θ(Φ(U(B, γ, s)× {pe(Z)}, x, y, z)), (6)

where Φ is the feature sampling operation, and Θ is the
MLP that takes sampled features as the input.
Equivariant property. Building upon previous designs, we
have the capability to create scenes according to the BEV
map. As a result, this allows us to synthesize a scene of
infinite scale in a divide-and-conquer fashion, i.e., divid-
ing a global map into local patches, generating local scenes,
and composing them together. However, the BEV condi-
tioned radiance field can result in uncertainty in terms of
fine-grained details. This uncertainty may lead to the syn-
thesis inconsistency since the same objects may appear in
multiple local scenes, substantially deteriorating the quality
when composing several local scenes for large-scale scene
synthesis. We thus seek for the guarantee of the equivariant
property.

In particular, regular convolutions with padding and
down-sampling tend to cause aliasing [24, 62], i.e., the syn-
thesized concepts are strongly related to their coordinates.
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Considering this, we carefully design the operations in U-
Net to maintain the equivariance to a maximum extent. 1)
BEV with a wide margin: as border padding would leak the
absolute positional information to the internal representa-
tions [17, 25, 56], we follow [24] to leave a large margin
around BEV map to ensure the representation unimpeded
by padding. 2) Low-pass filters: it is inevitable to down-
sample the internal feature maps, for the sake of memory
efficiency. According to Nyquist Law [44], the represen-
tation capacity of a regularly sampled signal is bound by
half of the sampling rate. Otherwise, excessive signals can
cause aliasing. Therefore, we introduce the low-pass filter
before down-sampling to restrict the representation within a
reliable region. The transform for the downsample becomes

T (·) = Low-Pass(·) ◦ Interp(·), (7)

where the low pass filter is designed as a finite impulse re-
sponse (FIR) filter. With this equivariant property, generat-
ing large scale scenes becomes simply composing multiple
local scenes, with the consistent concepts.

3.3. Scene generation framework

With the equivariant BEV-conditioned representation de-
signed above, we now introduce BerfScene, the pro-
posed method for infinite 3D scene generation.
Generator. The generator consists of a U-Net encoder that
produces the spatial feature map for the volume rendering
in Eq. (6). Concretely, this U-Net encoder takes Fourier
feature as input, where the internal features would be modu-
lated via the latent code. Besides, BEV map B would be in-
corporated into this encoder through the SEL, which could
further guide the spatial configurations of the final synthe-
sis. As internal feature maps are gradually down-sampled,
we apply the low-pass filters to remove the excessive fre-
quencies, improving the equivariance of theis encoder. To
this end, the output feature map of this unet manages to
correctly and equivariantly reflect the spatial structure de-
termined by BEV maps. Given this feature maps, images
would be obtained through the neural rendering.
Discriminator. We follow the dual-discriminator design of
EG3D [3]. A bi-linearly upsampled version of the rendered
image is concatenated with the super-resolved version. The
discriminator takes as input the resulted six-channel image.
Training objectives. During training, style code s is ran-
domly sampled from Gaussian distribution. BEV map B
and camera pose γ are randomly sampled from the dataset.
We optimize traditional adversarial loss Ladv , R1 regular-
ization loss LR1

, and density regularization loss Ldensity as
proposed in [3]. The overall training target is a weighted
sum of the above loss terms:

L = λadvLadv + λR1
LR1

+ λdensityLdensity, (8)

where λadv, λR1
, λdensity are weighted coefficients.

Inference of infinite-scale synthesis. Rather than generat-
ing high-quality local scene images, BerfScene supports
scene generation at an infinite scale. After defining a global
BEV map, we divide it into several local BEVs and ren-
der images conditioned on them. One can get a progres-
sively moving video by continuously cropping local BEVs.
In addition, broad-view image can be generated by stitching
rendered results. We also adopt supersampling anti-aliasing
(SSAA) to perform ray marching at a temporary higher res-
olution and downsample the feature map to the original res-
olution. SSAA suppresses aliasing effect and provides bet-
ter visual quality.

4. Experiments
We evaluate BerfScene on diverse datasets, and compare
it with baseline methods of both image generation and 3D-
aware image generation.

4.1. Settings

Datasets. We conduct experiments on three datasets:
CLEVR [18], 3D-Front [10, 11], and Carla [9]. CLEVR is a
multi-object dataset with a 3D rendering engine. We use the
official script to render images for training and evaluation.
The camera position is fixed in the global coordinate. For
each scene, we randomly place 3 to 8 objects with various
colors and shapes. We collect 80,000 images in 256 × 256
resolution. 3D-Front is a 3D indoor scene dataset with di-
verse furniture including bed, wardrobe, etc. We randomly
place the camera and collect 50,000 images in 256 × 256
resolution on this dataset, covering 2535 different scenes
in total. Carla is a driving simulator with realistic visual
appearance. It covers different weather conditions, and di-
verse road environments (from rural to urban). We collect
28,000 frames in 256× 256 resolution.
Metrics. Following the prior, we use the Frechet Inception
Distance (FID) as a quantitative metric to evaluate the qual-
ity of our image synthesis results. We sample 50K real im-
ages and 50K generated samples to compute the FID score.
Additionally, we measure the consistency of the same scene
under different local coordinates to test composition feasi-
bility. Since it is challenging to directly compare generated
3D scenes, we approximate the scene using the rendered
image G(B, z). Following [24], we report the peak signal-
to-noise ratio (PSNR) in decibels (dB) between two sets of
images obtained by translating the input and output by a
random amount:

EQT = 10 · log(
I2max

Es,x(∥G(tx[B], s)− tx[G(B, s)]∥)
),

(9)
where tx[·] stands for translation operation by x margin, and
the intended dynamic range of generated images from −1 to
+1 gives Imax = 2.
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Table 1. Evaluation with baselines. FID and EQT are reported as
evaluation metrics. Note that we highlight the best results among
3D-aware models.

Method CLEVR Front-3D Carla

FID (↓) EQT (↑) FID (↓) EQT (↑) FID (↓)

StyleGAN2 6.95 - 31.01 - 16.89

GSN - - 130.70 - -
EG3D 4.67 - 80.70 - 46.8
CC3D 3.61 21.94 42.88 14.74 45.2

Ours 0.96 22.02 36.78 15.76 40.7

Baseline. We compare our method to both 2D and 3D
GANs. Specifically, we evaluate our approach against
StyleGAN2, EG3D, and GSN to explore the impacts of in-
troducing inductive biases, such as equivariance, on image
quality. Additionally, we assess our capacity of model for
generating compositional 3D scenes using CC3D, which is
a scene generation framework conditioned on BEV.
Implementation details. We follow the architecture de-
sign of EG3D except our equivariant BEV-conditioned gen-
erator. To determine the best R1 regularization weight, we
performed a grid search across various datasets and meth-
ods. The values of R1 regularization weight used in our ex-
periments are available in the supplementary material. All
other hyper-parameters were kept the same as EG3D. We
conducted all experiments on 8×A100 GPUs with a batch
size of 64. More details can be found in the supplementary
material.

4.2. Generation Results

Qualitative results. In Fig. 3, we present results of local
and global scene synthesis from our method and the base-
lines. For local scene synthesis, StyleGAN2, as a 2D im-
age generator, cannot support the explicit camera control.
On the contrary, we show two different views of one single
scene for EG3D, CC3D, and ours.

When tested on the CLEVR dataset, StyleGAN2 fails to
generate consistent object appearances. In the first exam-
ple of StyleGAN2, the generated cylinder has a mixed color
that is not present in the dataset. Both EG3D and CC3D suf-
fer from blurry results, with slight blurs found in the gener-
ated output and twisted edges can be seen in CC3D’s results.
In contrast, our method consistently produces high-fidelity
images and also supports excellent camera control, as evi-
denced by the consistent results across different camera an-
gles. On the 3D-Front dataset, StyleGAN2 generates indoor
scenes with high fidelity. EG3D fails to generate consistent
results as the texture and shape vary across different cam-
era poses. CC3D generates inaccurate shapes for small ob-
jects like nightstands and is leaning to generate blurry tex-
tures. In contrast, our method can generate indoor furniture
with decent and consistent appearance across different cam-
era views, demonstrating the effectiveness of our proposed

scene representation.
Since both CC3D and our method are conditioned on

BEV maps, we can continuously roll out BEV patches and
generate and compose local scenes for global scene synthe-
sis. We test the capacity of large scene synthesis on CLEVR
and Carla. For CLEVR, CC3D generates transient color of
a single object and blurry edges, indicating fractional shak-
ing across local patches. Our method can generate a high-
fidelity global scene without any inconsistencies or blurs.
For Carla, our method can generate high quality driving
videos with consistent visual appearance and 3D geome-
try of buildings and trees. Yet CC3D produces flickering
frames with severe inconsistency.
Quantitative evaluations. Tab. 1 reports the quantita-
tive results (FID and EQT) over different methods*. On
CLEVR, BerfScene achieves a FID score of 0.96, a far
better result compared to other methods. Regarding 3D-
Front, our method also gains a significant lead among all
3D GANs. Additionally, our method consistently outper-
forms other 3D GANs in terms of EQT, demonstrating that
our approach not only generates realistic 3D scene images
but also enjoys good equivariance. This property is essential
for composing local scenes into a large-scale scene, making
our method a promising solution for generating 3D scenes
of arbitrary scales.

4.3. Ablation Study

To better understand the individual contributions, we ablate
main components by comparing quantitative metrics and
qualitative large-scale scene synthesis results.
Radiance field representation design. To guide the gen-
eration process using BEV maps, we incorporated the Spa-
tial Encoding Layer (SEL) into our generator to fuse the
BEV. The output BEV feature map is further extended by
positional embedding over the coordinate z to create the ra-
diance field representation. We compare this design to the
triplane representation and 2D-to-3D extrusion proposed by
[1]. To ensure a fair comparison, all designs share the same
backbone, with the last convolutional layer having different
output channels. Our design output 32 channels, while the
triplane representation triples the channel number, and the
2D-to-3D extrusion produces 32×N channels, where N is
the number of height dimension channels. In Tab. 2, worse
performance on FID and EQT is observed for both triplane
and extruded plane designs. In Fig. 4, the generated global
scenes with these two designs also suffer from severe arti-
facts.
Padding BEV. To analyze how additional padding sup-
presses aliasing, we compare models trained on BEVs with
and without padding. As can be seen in Tab. 3, EQT drops
by a large margin. This result indicates that positional in-

*We failed to train GSN on CLEVR with the official implementation,
hence we do not report the quantitative results.
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Figure 4. Qualitative comparison for ablations on large-scale scene synthesis.

Table 2. Ablation study over different backbone design choices.

Configuration CLEVR Front-3D

FID (↓) EQT (↑) FID (↓) EQT (↑)

Triplane 18.11 19.58 39.17 14.10
Extruded plane 5.60 20.13 50.40 15.29

Ours 0.96 22.02 36.78 15.76

Table 3. Ablation study over design components.

Configuration CLEVR Front-3D

FID (↓) EQT (↑) FID (↓) EQT (↑)

w/o padding BEV 2.50 19.01 51.30 13.32
w/o low-pass filter 5.53 18.19 36.87 14.45
w/o SEL 6.27 22.00 45.90 15.41

Ours 0.96 22.02 36.78 15.76

formation leaks into the generator and disrupts the equivari-
ance property, limiting models for large-scale scene gener-
ation (also see wierd shapes in Fig. 4).
Low-pass filters. Beside padding in CNNs, aliasing could
also be caused by excessive high frequency noise after down
sampling layers. We study whether low-pass filter helps al-
leviate it in our 3D generation scenario. After removing
low-pass filters in the network, EQT goes down, with in-
tense discontinuity observed in the generated global scene,
demonstrating that low-pass filters are essential to guaran-
tee the equivariance property.
SEL layer. In our U-Net backbone, BEV map is repeatedly
fused into the feature map through SEL layer to achieve pre-

cise layout control. An alternative choice is to directly feed
BEV into the backbone. As shown in Tab. 3, FID increases
by a large margin compared to our method with SEL. We
hypothesize that repeated SELs could make the best of the
geometry guidance from BEV, and thus generates scenes
with more realistic and relevant spatial configurations.

5. Applications of BerfScene
5.1. Infinite scene generation

Our method can generate large-scale, even infinite, scenes,
by dividing a global scene into local patches, generating and
then seamlessly composing them. Concretely, we use slid-
ing window to get continuous local BEV maps. These maps
serve as the conditioning input for generating a navigating
video. Then, we extract the middle vertical line from each
frame in the video and stack them to form a holistic view
of the entire scene. We demonstrate generated large-scale
scenes with various layouts in Fig. 4.

5.2. Scene editing

Our generator is conditioned on the BEV map, thus it is
easy to edit the scene by varying the input BEV map. In
Fig. 5, we demonstrate different scene editing results in-
cluding 1) translation, a user can rearrange objects’ lay-
out; 2) restyling, a user can directly modify single object’s
semantic to achieve restyling; 3) removal and insertion, a
user can delete or copy objects from the scene.
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Figure 5. Controllable 3D scene synthesis in 256 × 256 resolution. We perform versatile user control on the scene objects by varying
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6. Discussion

Limitations. Although infinite-scale scene generation has
been enabled, there remain several limitations we would
like to discuss. First, as we follow the generative radiance
field that mainly learns from the training set, the view of
camera for inference is quite limited for large-scale scene
synthesis. Collecting data with more diverse observations
may help alleviate this issue. Second, current design only
supports the static scene generation. How to enable the
large-scale dynamic scene synthesis remains open for fu-
ture work. Furthermore, it is important to note that our
method may encounter challenges in achieving precise at-
tribute control due to the absence of explicit supervision.
For instance, when specifying a particular color in the BEV
map, the synthesized output may exhibit a different color.

This could potentially be enhanced by incorporating CLIP
supervision.

Conclusion. This work introduces BerfScene that can
generate 3D scenes of arbitrary scales. We propose a BEV-
conditioned radiance field to represent a 3D scene. This
approach enables users to directly steer the generated spa-
tial configurations via BEV maps. To ensure smooth and
consistent composition of multiple scenes, we further en-
sure the equivariance of the BEV-conditioned representa-
tions. We introduce several architectural designs, including
a wider margin and low-pass filters, to achieve this goal.
As a result, we can synthesize infinite-scale scenes by sim-
ply composing multiple syntheses controlled by local BEV
maps. Experimental results on various 3D scene datasets
demonstrate the effectiveness of our proposed method.
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BerfScene: Bev-conditioned Equivariant Radiance Fields
for Infinite 3D Scene Generation

Supplementary Material

A. Datasets Details

In this section, we introduce the datasets we use and show
sampled BEV maps and front view images.

CLEVR. CLEVR [18] is a synthetic dataset, containing
cubes, spheres, and cylinders with different colors. We
adopt the official script† for rendering. 80K images are col-
lected in total. The camera positions are fixed for all the im-
ages. In Fig. A1, we show rendered images with their corre-
sponding BEV maps. We demonstrate tight BEV maps used
in the ablation study which represent just the right amount
of objects as in the front views. In addition, we also show
BEV maps with broader paddings for improving the equiv-
ariance of the BEV-conditioned representation. We con-
catenate together a one-hot vector which indicates color and
a one-hot vector which indicates shape at each pixel of the
BEV map.

3D-Front. 3D-Front [10, 11] is an indoor scene dataset,
which contains different kinds of furniture with fine details.
We use the public script‡ for rendering. We filter out ob-
jects with abnormal sizes and collect 2535 different scenes
in total. For each scene, we render 20 images from different
camera poses. Fig. A2 shows sampled pairs of rendered im-
ages and BEV maps. Similar to CLEVR, for each scene, we
prepare a tight BEV map for the ablation study, and also a
broader version for sake of equivariance. The channel num-
ber of the BEV map is one. For each pixel, 0 indicates not
occupied by any furniture, while 1 indicates occupied. We
do not include any categorical information in the BEV map.
Instead, the generator shall infer such knowledge from size,
shape, and relative positions between different objects.

Carla. Carla [9] is a self-driving research simulator that
offers a variety of realistic visual patterns, including di-
verse weather conditions and different types of scenes rang-
ing from rural to urban. In our research, we employ a car
equipped with a PID controller to autonomously navigate
through the town, capturing images with a front-facing cam-
era. A total of 80K images are collected during the process.
The relative camera positions to the car remain fixed for all
the images. Additionally, we generate the semantic bird’s-
eye view (BEV) map following the official primitive guide-
lines. Fig. A3 shows sampled images and BEV maps.

†https://github.com/facebookresearch/clevr-dataset-gen
‡https://github.com/DLR-RM/BlenderProc/blob/main/examples

B. Implementation Details

We implemented a U-Net architecture for our generator,
which consists of four encoders followed by four decoders.
Our input is a Fourier feature of shape 256 × 256 × 256,
which is computed by StyleGAN3’s SynthesisInput
module. Each encoder downsamples the feature map by a
factor of 2 until it reaches a resolution of 16× 16.

Each encoder in our U-Net architecture includes a down-
sample layer, a low-pass filter, an SEL module, and two
layers of modulated convolutions. The low-pass filter is de-
signed as a finite impulse response (FIR) filter. The kernel
size in the modulated convolutions is 3, while it is 1 in the
SEL module. The SEL module takes the similar design as in
[54], while we add a low-pass filter after the downsampling
operation. The decoders share a similar architecture design
with the encoders, except that there is no low-pass filter in
the decoders. This is because the upsampling operation in
the decoders does not limit the bandwidth of the signal.

C. Infinite Generation

In this section, we make a detailed discussion about how to
perform infinite generation over CLEVR and provide more
visual examples.
How to synthesize infinite 3D scene? As illustrated by
Fig. A4, we generate arbitrary-scale 3D scenes in a divide-
and-conquer manner. To generate global scenes, we begin
by dividing the global BEV maps into smaller local ones by
a sliding window. Using these local BEV maps as input, we
generate 3D scenes and obtain multiple first view images.
To form the final global scene, we extract the middle line
of pixels from each image and concatenate them together.
This process allows us to combine the information from all
the local BEV maps and generate a complete representation
of the global scene. It is worth mentioning that, during the
divide stage, the moving window is shifted pixel by pixel.

Such a design for infinite-scale scene generation places a
significant demand on the equivariance property of the gen-
erator, as it requires the generator to maintain consistency
at a pixel granularity level. An additional benefit of this
approach is that by generating local frames and combining
them, we can obtain a traversing video: by simply stacking
the generated frames, we can create a video that allows for
seamless exploration of the entire scene. Videos are zipped
in the Supplementary Material.

If we do not need traversing video, but only want to get
a composite image of the global scene, we can optimize
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(A)

(B)

(C)

Figure A1. Sampled front view images and BEV maps on CLEVR. Row A shows rendered front view images. Row B and C show
corresponding BEV maps without and with broader paddings.

(A)

(B)

(C)

Figure A2. Sampled front view images and BEV maps on 3D-Front. Row A shows rendered front view images. Row B and C show
corresponding BEV maps without and with broader paddings.

the pipeline by increasing the sliding window step size to
Nstep. This approach involves collecting Nloc consecutive
lines of pixels from each synthesized image and concate-
nating them to form the global view. Leveraging the per-
spective relationship, we can determine that Nloc is equal to

1
fnorm

·Nstep, where fnorm represents the normalized focal
length. Fig. A5 shows the results when Nstep equals 1, 10,
20, 30, 40. Serrated artifacts can be observed as Nstep in-
creases, while Nstep = 10 achieves a good balance between
efficiency and quality of large-scale 3D scene synthesis.
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Figure A3. Sampled front view images and BEV maps on Carla. The up row shows paired front view images and BEV maps. The
bottom row shows diverse weather conditions.

Conquer

Moving by 

pixel

Moving by 

pixel

Divide

Merge

Figure A4. Illustration of how to perform infinite-scale 3D scene generation.

More samples. We show more synthesized large scene
in Fig. A6. The corresponding traversing videos could be
found at the Supplementary Material.
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Figure A5. Synthesized results over different Nstep choices.
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Same color and shape, different positions

Different colors and shapes, same position

Figure A6. Synthesized large-scale 3D scene.
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